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One-dimensional toy model of globular clusters

D. Fanelli,1,* M. Merafina,2,† and S. Ruffo3,‡

1Department of Numerical Analysis and Computer Science, KTH, S-100 44 Stockholm, Sweden
2Dipartimento di Fisica, Universita´ di Roma ‘‘La Sapienza,’’ Piazzale Aldo Moro, 2 - I-00185 Roma, Italy

3Dipartimento di Energetica ‘‘Sergio Stecco,’’ Universita´ di Firenze, INFM and INFN, Via S. Marta, 3 - I-50139 Firenze, Italy
~Received 5 July 2000; revised manuscript received 26 February 2001; published 29 May 2001!

We introduce a one-dimensional toy model of globular clusters. The model is a version of the well-known
gravitational sheets system, where we also take into account mass and energy loss by evaporation of stars at the
boundaries. Numerical integration by the ‘‘exact’’ event-driven dynamics is performed, for initial uniform
density and Gaussian random velocities. Two distinct quasistationary asymptotic regimes are attained, depend-
ing on the initial energy of the system. We guess the forms of the density and velocity profiles that fit
numerical data extremely well and allow us to perform an independent calculation of the self-consistent
gravitational potential. Some power laws for the asymptotic number of stars and for the collision times are
suggested.
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I. INTRODUCTION

Globular clusters are gravitationally bound concentratio
of large numbers of stars, spherically distributed in spa
They orbit around a galaxy spending most of the time in
galactic halo@1#. The most important elements governin
globular clusters structure are two-body relaxation and tr
cation due to tidal forces. Different dynamical models co
sidering these specific phenomena, have been investig
both analytically@1–4# and numerically@5–7#. For an ex-
tended discussion, see@8# and references therein.

Dynamical evolution causes stars to escape as an effe
the gravitational interaction with the nearby galaxies. T
evaporation process drives the cluster towards a config
tion with a high-density core and the velocity dispersion
stars in the bulk can increase without limit. This pheno
enon is known asgravothermal catastropheand its study
goes back to Antonov@9# and to Lynden-Bell and Wood
@10#.

Referring to the pioneering work of Chandrasekhar@1#, it
is possible to calculate the perturbations induced by ste
encounters on star motion. This is done by means of a
fusion model, which leads to quantitative description
changes of star velocities in terms of single encounters. C
sidering weak encounters, i.e., solving the diffusion mode
the Fokker-Planck approximation, King@4# found the fol-
lowing expression for the velocity profile:

f 0~v !5AFexpS 2v2

2s2 D 2expS 2vc
2

2s2 D G for v<vc,

f 050 for v.vc , ~1!

where vc is a cutoff velocity of the stars,s is the one-
dimensional velocity dispersion, andA a normalization con-
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stant. King’s models have been shown to be in agreem
with the observed brightness surface profiles of globu
clusters@4#. Further developments of King’s model@8# con-
sider the same functional form~truncated Gaussian! applied
to the gravitational energy, and hence, propose a gen
form for the distribution functionf (x,v). We will not con-
sider here these extensions.

In this paper we discuss a simplified one-dimensio
N-body model that reproduces King’s distribution. We let t
particles, all of equal massm, interact through the one
dimensional gravitational potentialV52pGm2uxu, whereG
is the gravitational constant. Bearing in mind the comparis
with globular clusters, we imitate the effect of galactic tid
forces by introducing a finite cutoff in positions. Thus, th
evaporation of stars from the system is the only ‘‘dissip
tive’’ effect we consider. This is enough to drive the syste
towards an asymptoticnonstationaryregime, that we analyze
in detail, and that reveals striking similarity with King’
model.

The main difference between the simplified on
dimensional model considered here and a more real
three-dimensional one, is the lack of any singularity of t
potential at the origin. The presence of a finite lower bou
for the one-dimensional~1D! potential makes less energ
available to support the evaporation process as the sys
cools down. In the 3D case, an infinite amount of energy
indeed be extracted from the singular pair-wise gravitatio
interaction, which is the main origin of the gravotherm
catastrophe. This is the reason why the model we disc
cannot reproduce the core collapse corresponding to the
vothermal catastrophe.

In the next section we present the model and the res
concerning velocity distribution and density profiles. Secti
III is devoted to the discussion of power laws for the numb
of particles in the cluster. Finally, in Sec. IV, we draw som
conclusions.

II. ONE-DIMENSIONAL MODEL

Let us consider a one-dimensional classical Newton
self-gravitating system ofN particles with equal massm,
with Hamiltonian@11#
©2001 The American Physical Society14-1
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H5
1

2
m(

i

N

v i
212pGm2(

j , i
uxi2xj u, ~2!

wherexi is the position andv i the velocity ofi th star.G is
the universal gravitational constant. We choose in the
lowing m51 and 2pG51. This system has recently bee
the subject of intensive investigations@12#. Particle accelera-
tions are constant in between two collisions and are prop
tional to the net difference of particles, respectively, on
right and on the left. When a collision occurs, particles cr
each other, or, equivalently, collisions are elastic. This p
ticle approach is known to correspond in the continuum lim
(N→`) to the Vlasov-Poisson equations for the distributi
function f (x,v)

] f

]t
1v

] f

]x
2

]V

]x

] f

]v
50,

~3!
]2V

]x2
54pGmE f ~x,v !dv,

whereV(x) is the self-consistent gravitational potential.
We add the following features to the model:
~i! Particles are confined in a box of sizeL, i.e., xiP

@2L/2,L/2#.
~ii ! The effect of tidal forces induced by the parent gala

is imitated by requiring that each time a particle reaches
boundary of the box with a finite velocity, it drops out of th
system, which therefore experiences a mass and energy
~‘‘evaporation’’!. This last feature implies that system~3! is
solved with absorbing boundary conditions.

The numerical implementation is based on an ‘‘eve
driven’’ scheme, first introduced in plasma physics@13#,
which is adapted to the present case as follows. The a
rithm looks for the particles that collide the first and for t
time when the event occurs,tcoll . Then it computes the firs
‘‘evaporation time’’ tevap and makes the system evolve un
the minimumtmin between the collision and the evaporati
time is reached. Once the system experiences evapora
the total mass is reduced and the escaping particle stop
teracting with the residual bulk. By rescaling the positi
and the velocity of each particle, i.e., introducing a loc
dissipation, we maintain the position of the center of m
fixed and its velocity to zero. This means we simply transl
velocity and position of the remaining particles to keep
system centered in position and momentum space. A par
can escape from the system as a result of this rescaling:
possibility is taken into account even if it has a low probab
ity.

Evaporation is a singular event, which, in fact, marks
transition between two self-gravitating systems having a
ferent number of particles and energy. We remark that
integration scheme is ‘‘exact.’’ Timet elapsed from the ini-
tial configuration is obtained by summing all values oftmin
up to the last event.

In all numerical experiments,N(0) particles are initially
uniformly distributed in the box and the initial velocities a
06661
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Gaussian identical independently distributed random v
ables, with the temperatureT0 given by twice the average
kinetic energy.

In Fig. 1 we show the time evolution of the number
particlesN(t) that remain inside the box up to timet. After
an abrupt decrease ofN(t), which strongly depends on th
initial condition, the system reaches a state where rare ev
rations are present, makingN(t) decrease much slower. Ou
numerical experiments show that such aquasistationarystate
lives indefinitely, although we cannot exclude that, final
N(t) relaxes to an asymptotic valueNas . As the best ap-
proximation for this value, we take the one the syste
reaches in the longest computer runs.

Given L, for large enoughT0 the system approaches
state characterized by a single cluster, which adapts itse
the size of the box. In Fig. 2 we show the phase-space
trait for a system in its late stage evolution, when the m
energetic particles have dropped out from the box and
system has relaxed to an asymptoticplateau, as the ones
reported in Fig. 1. The particles are almost uniformly distr
uted within a bounded region of the phase plane. Both
fact, and the shape of the contour, suggest a possible con
tion with the so-called water-bag~WB! distribution @11,14#.

FIG. 1. Plots ofN vs. t ime for increasing initial temperatures
with N(0)5400. Temperature and time are expressed in arbitr
units.

FIG. 2. Phase-space plot for a system ofN(0)51500 particles
after 303106 collisions. Here,T050.4, L50.0015, andNas5886.
The quantitiesx andv are expressed in arbitrary units. The full lin
that contains all the points is the theoretical prediction~7!
4-2
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This is astationarysolution of the Vlasov-Poisson syste
~3!, f WB(x,v), which is constant in a simply connected d
main V of the phase plane and strictly zero outside.

Adopting the notation of Ref.@11#, we call, respectively,
xs andvs the maximum position and velocity of the WB. Th
potentialV(x) for such a distribution is then implicitly spec
fied by the following integral equation:

x5
e3/4

Nas
E

0

V(x)

@e3/22~e2z!3/2#21/2dz. ~4!

The maximal energy of the water-bage is such that, if we
express f (x,v) in terms of the energyu5v2/21V(x),
f (x,v)5F(u)50 if u.e. The energye is related toxs and
vs by e5vs

2/2, V(xs)5e and the zero energy level is fixe
by requiring thatV(0)50. The density profilerWB(x) is
expressed as a function of the potential

rWB~x!5
3Nas

2

8e3/2
~e2V!1/2. ~5!

Since the distribution functionf (x,v) is constant overV, it
follows immediately that

rWB~x!5E
2v1(x)

v1(x)
f ~x,v !dv52cv1~x!, ~6!

wherev1(x) represents the profile of the upper branch of
WB contour, which we assumed to be symmetric, andc
53Nas

2 /(16A2e3/2). Using Eq.~5!, this implies

v1~x!5A2~e2V!. ~7!

To compute the velocity contourv1(x), we need to know
V(x), which we do by solving Eq.~4! by an adaptive recur
sive Newton-Cotes eight-panel rule with tolerance 1027.
This velocity contour is drawn in Fig. 2 and, as predicte
encloses all phase points. In derivingV(x) we have taken the
valuevs from the cluster phase plot; this is the only pheno
enological input in this calculation and the agreement w
the data has to be considered quite satisfactory.

Moreover, we can compare the theoretically derived
tential V(x) with the one computed directly from th
asymptotic positions

V~xi !5(
j

uxi2xj u. ~8!

We need, of course, to perform a vertical shift to fix the ze
in the origin. The result of formula~8! is reported in Fig. 3
together with the theoretically derived potential. The agr
ment is very good. We are thus led to conclude that
asymptotic state is well described by a water bag. Howe
this latter is a stationary solution of the self-gravitating 1
system, while in our simulations we continue to obse
some particle evaporations even at very long times. Thi
why we have called our asymptotic statequasistationaryand
its description in terms of a water-bag distribution can o
be approximate.
06661
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An alternative treatment of the asymptotic state is ba
on King’s formula~1!. In this case, one does not try to re
produce the full distribution function, but just its projection
along thex andv axis: r(x)5* f dv and f 0(v)5* f dx. Fol-
lowing the standard derivation of the equilibrium isotherm
distribution@15#, we are led to introduce an analytical ansa¨tz
for the density profile

r~x!5AFcosh22~Bx!2cosh22S B
L

2D G for uxu,
L

2
~9!

r~x!50 for uxu.
L

2
,

where the normalizationA is fixed by *2L/2
L/2 r(x)dx5Nas .

For the velocities, we take King’s distribution, specified
Eq. ~1!. Assumingr(x) as in Eq.~9! we can derive a close
analytical expression for the potential. For a one-dimensio
system, the following relation holds in the continuum limi

V~x!5E
2L/2

L/2

uy2xur~y!dy. ~10!

Inserting Eq.~9! into Eq. ~10! and performing the integral
we get

V~x!5V0F L

B
tanhS B

L

2D2S x21
L2

4 D cosh22S B
L

2D

1
2

B2
lnS cosh~Bx!

coshS B
L

2D D G , ~11!

with

V05
Nas

2

B
tanhS B

L

2D2L cosh22S B
L

2D . ~12!

FIG. 3. Gravitational potential calculated numerically using E
~8! ~squares! and analytically by solving the integral Eq.~4! with
vs50.88 ~full line!. Only the region of positivex is drawn, in arbi-
trary units.
4-3
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V(x) is quadratic for smallx. To verify the reliability of our
guess we reanalyze the data previously discussed in con
tion with the water-bag distribution. In Fig. 4 we plot th
potential calculated numerically from Eq.~8! together with a
one-parameter fit, using Eq.~11!. Again, the agreement with
the data is very good and apparently even superior to the
obtained using the WB picture. This is simply due to the f
that here we perform a one parameter fit, while, in the p
vious discussion,vs was arbitrarily deduced from the phas
space analysis. As a cross check, we introduce in Eq.~9! the
coefficientB, determined from the fit of the potential. Th
resulting density profile is plotted in Fig. 5 and it agrees w
the normalized histogram of particles position. Finally,
histogram of the velocity is represented in Fig. 6. T
reverse-cup shape due to the cutoff of the tails is evid
The solid line in Fig. 6 is a numerical fit that uses the e
pression of Eq.~1! with vc ands as free parameters.

As a side remark we observe that, coherently with
observed form of the potential, each particle oscillates alm
harmonically inside the box. This can be seen by looking
the asymptotic orbit of a single particle~Fig. 7!. The slight
diffusion of the orbit is the signature of the interaction wi
the other particles, which induces a weak chaoticity.

FIG. 4. Gravitational potential calculated numerically using E
~8! ~squares! and by a numerical fit that uses Eq.~11! ~full line!,
whereB5731.2 is the only free parameter.

FIG. 5. Normalized histogram of positions as derived from
phase-space plot in Fig. 2. The solid line is Eq.~9!, with B
5731.2 as shown previously. Positionx is expressed in arbitrary
units.
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A further aspect that we have tested is the dependenc
the dynamics on the initial temperatureT0. Indeed, for small
values ofT0, the system shows a pronounced collapse, wh
leads to a massive central core, as it is clearly displaye
the main plot of Fig. 8. This phase-space distribution sign
cantly differs from the one in Fig. 2 and cannot be rep
sented by a water bag. The histograms of positions and
locities are computed and plotted in the right and left inse
respectively. Both the density and the velocity profiles a
very well reproduced by a numerical fit based on our ans¨tz
~9! and on King’s distribution~1!.

In conclusion, the ansa¨tz we have introduced shows
good agreement with numerical data for all values ofT0 we
have simulated, while the water-bag distribution fails to
produce the velocity and density profiles at very low init
temperature. However, in the high-temperature range,
water-bag treatment is superior, because it leads to an a
rate description of the full distributionf (x,v).

III. SCALING LAWS

In this section we discuss some numerically found scal
laws that do not presently have a theoretical justification,

. FIG. 6. Normalized histogram of velocities as derived from t
phase-space plot in Fig. 2. The solid line is the fit obtained us
Eq. ~1! with s50.87,vc50.98. Velocityv is expressed in arbitrary
units.

FIG. 7. Asymptotic orbit of a single particle forN(0)5600, L
50.0035. Positions and velocities are expressed in arbitrary un
4-4
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that are an important signature of the presence of a fi
box.

We follow the system until it reaches the asymptotic sta
Ncoll being the number of collisions, we define the ‘‘avera
collision time’’ t5t/Ncoll .

In the main plot of Fig. 9 we representNas as a function
of t. Each point refers to a different value of the initi
temperatureT0, varying form 0.2 to 7, whileNcoll is main-
tained constant for each realization. The initial temperat
controls the rate of evaporation at a very early stage of
evolution. Larger values ofT0, produce higher mass los
inducing the system to relax to a quasistationary state c
acterized by less residual particlesNas ~see Fig. 1!. This
process has consequences at the dynamical level, dete
ing a larger mean-free-path, and consequently, a larger v
of t. The curve in Fig. 9 is consistent with this qualitativ
picture, showing a power-law decay with exponentsa5

FIG. 8. Phase-space plot for a system ofN(0)51500 particles
after 303106 collisions. Here,T050.02, L50.0015, andNas

51167. Left inset: normalized histogram of positions. The so
line is a fit that uses Eq.~9! whereB56845.7. Right inset: normal
ized histogram of velocities. The solid line is the fit obtained us
Eq. ~1! with s50.3, vc51.9. All quantities are expressed in arb
trary units.

FIG. 9. Nas vs t in log-log scale. Here,t is defined as the ratio
t/Ncoll . Each point refers to a differentT0 while Ncoll is fixed. The
solid line represents a power-law fit with the slopea520.4. In the
upper right corner insett vs T0 is represented in a log-log scale
The quantitiesT0 andt are expressed in arbitrary units.
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20.4, which is valid over more than two decades. In t
insert of Fig. 9, we plott vs T0.

We have also checked the dependence onN of the colli-
sion time tcoll , defined as an average of all the collisio
times corresponding to each fixed value ofN, i.e., in between
two successive evaporations. In Fig. 10, we plot the res
of different numerical experiments where we vary the init
temperatureT0. The dependence oftcoll on N is again a
power law with exponentb522.5. Note thatb;1/a, hence,
Fig. 9 can be thought of as a macroscopic averaged imag
the microscopic properties shown in Fig. 10.

IV. CONCLUSIONS

We have introduced a one-dimensional toy model
globular clusters with an emphasis on the evaporation p
cess. With this in mind, we have discussed the effect
introducing a finite size box in a classical one-dimensio
self-gravitating medium. The dynamics of the system h
been investigated for a special class of initial conditions. W
pointed out the appearance of two distinct, nonstationa
asymptotic regimes that occur depending on the tempera
of the initial realization. For small values ofT0, similarities
with the isothermal solution are found, while for larger tem
peratures, the density and velocity profiles are well rep
duced, also assuming a water-bag distribution.

We propose a form of the density profile, with a cutoff
the tails, which fits well with numerical data in all the ex
plored regimes, allowing us to derive a close analytical
pression of the gravitational potential. Moreover, a King-li
velocity profile is shown to be in good agreement with t
numerical data. The asymptotic truncated profiles are thu
direct consequence of the evaporation from the finite box

Finally, we have also given numerical evidence of so
scaling laws, which remain to be theoretically explained,
that are strongly related to the escaping process.

In the future, we plan to extend this study to the system
concentric spherical mass shells@2# by introducing an exter-
nal absorbing boundary in the configuration space, as d
here.

FIG. 10. tcoll vs N in log-log scale forN(0)5600, L50.0035.
Different symbols refer to different initial values of the temperatu
T0 . tcoll is expressed in arbitrary units.
4-5
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